

python-mpd2 Documentation

python-mpd2 is a Python library which provides a client interface for
the Music Player Daemon [http://musicpd.org].

Difference with python-mpd

python-mpd2 is a fork of python-mpd [https://pypi.python.org/pypi/python-mpd/]. While 0.4.x was backwards compatible
with python-mpd, starting with 0.5 provides enhanced features which are NOT
backward compatibles with the original python-mpd [https://pypi.python.org/pypi/python-mpd/] package. See
Porting for more information.

The following features were added:

	Python 3 support (but you need at least Python 2.7 or 3.4)

	asyncio/twisted support

	support for the client-to-client protocol

	support for new commands from MPD v0.17 (seekcur, prio, prioid,
config, searchadd, searchaddpl) and MPD v0.18 (readcomments, toggleoutput)

	remove deprecated commands (volume)

	explicitly declared MPD commands (which is handy when using for
example IPython [http://ipython.org])

	a test suite

	API documentation to add new commands (see Future Compatible)

	support for Unicode strings in all commands (optionally in python2,
default in python3 - see Unicode Handling)

	configurable timeouts

	support for logging

	improved support for sticker

	improved support for ranges

Getting Started

A quick guide for getting started python-mpd2:

	Getting Started

Command Reference

A complete list of all available commands:

	Commands

Changelog

	Change log

Index

 M

M

 	
 	MPDClient.add() (built-in function)

 	MPDClient.addid() (built-in function)

 	MPDClient.addtagid() (built-in function)

 	MPDClient.albumart() (built-in function)

 	MPDClient.channels() (built-in function)

 	MPDClient.clear() (built-in function)

 	MPDClient.clearerror() (built-in function)

 	MPDClient.cleartagid() (built-in function)

 	MPDClient.close() (built-in function)

 	MPDClient.commands() (built-in function)

 	MPDClient.config() (built-in function)

 	MPDClient.consume() (built-in function)

 	MPDClient.count() (built-in function)

 	MPDClient.crossfade() (built-in function)

 	MPDClient.currentsong() (built-in function)

 	MPDClient.decoders() (built-in function)

 	MPDClient.delete() (built-in function)

 	MPDClient.deleteid() (built-in function)

 	MPDClient.delpartition() (built-in function)

 	MPDClient.disableoutput() (built-in function)

 	MPDClient.enableoutput() (built-in function)

 	MPDClient.find() (built-in function)

 	MPDClient.findadd() (built-in function)

 	MPDClient.idle() (built-in function)

 	MPDClient.kill() (built-in function)

 	MPDClient.list() (built-in function)

 	MPDClient.listall() (built-in function)

 	MPDClient.listallinfo() (built-in function)

 	MPDClient.listfiles() (built-in function)

 	MPDClient.listmounts() (built-in function)

 	MPDClient.listneighbors() (built-in function)

 	MPDClient.listpartitions() (built-in function)

 	MPDClient.listplaylist() (built-in function)

 	MPDClient.listplaylistinfo() (built-in function)

 	MPDClient.listplaylists() (built-in function)

 	MPDClient.load() (built-in function)

 	MPDClient.lsinfo() (built-in function)

 	MPDClient.mixrampdb() (built-in function)

 	MPDClient.mixrampdelay() (built-in function)

 	MPDClient.mount() (built-in function)

 	MPDClient.move() (built-in function)

 	MPDClient.moveid() (built-in function)

 	MPDClient.moveoutput() (built-in function)

 	MPDClient.newpartition() (built-in function)

 	MPDClient.next() (built-in function)

 	MPDClient.notcommands() (built-in function)

 	MPDClient.outputs() (built-in function)

 	MPDClient.partition() (built-in function)

 	MPDClient.password() (built-in function)

 	MPDClient.pause() (built-in function)

 	MPDClient.ping() (built-in function)

 	MPDClient.play() (built-in function)

 	MPDClient.playid() (built-in function)

 	
 	MPDClient.playlist() (built-in function)

 	MPDClient.playlistadd() (built-in function)

 	MPDClient.playlistclear() (built-in function)

 	MPDClient.playlistdelete() (built-in function)

 	MPDClient.playlistfind() (built-in function)

 	MPDClient.playlistid() (built-in function)

 	MPDClient.playlistinfo() (built-in function)

 	MPDClient.playlistmove() (built-in function)

 	MPDClient.playlistsearch() (built-in function)

 	MPDClient.plchanges() (built-in function)

 	MPDClient.plchangesposid() (built-in function)

 	MPDClient.previous() (built-in function)

 	MPDClient.prio() (built-in function)

 	MPDClient.prioid() (built-in function)

 	MPDClient.random() (built-in function)

 	MPDClient.rangeid() (built-in function)

 	MPDClient.readcomments() (built-in function)

 	MPDClient.readmessages() (built-in function)

 	MPDClient.readpicture() (built-in function)

 	MPDClient.rename() (built-in function)

 	MPDClient.repeat() (built-in function)

 	MPDClient.replay_gain_mode() (built-in function)

 	MPDClient.replay_gain_status() (built-in function)

 	MPDClient.rescan() (built-in function)

 	MPDClient.rm() (built-in function)

 	MPDClient.save() (built-in function)

 	MPDClient.search() (built-in function)

 	MPDClient.searchadd() (built-in function)

 	MPDClient.searchaddpl() (built-in function)

 	MPDClient.seek() (built-in function)

 	MPDClient.seekcur() (built-in function)

 	MPDClient.seekid() (built-in function)

 	MPDClient.sendmessage() (built-in function)

 	MPDClient.setvol() (built-in function)

 	MPDClient.shuffle() (built-in function)

 	MPDClient.single() (built-in function)

 	MPDClient.stats() (built-in function)

 	MPDClient.status() (built-in function)

 	MPDClient.sticker_delete() (built-in function)

 	MPDClient.sticker_find() (built-in function), [1]

 	MPDClient.sticker_get() (built-in function)

 	MPDClient.sticker_list() (built-in function)

 	MPDClient.sticker_set() (built-in function)

 	MPDClient.stop() (built-in function)

 	MPDClient.subscribe() (built-in function)

 	MPDClient.swap() (built-in function)

 	MPDClient.swapid() (built-in function)

 	MPDClient.tagtypes() (built-in function)

 	MPDClient.toggleoutput() (built-in function)

 	MPDClient.unmount() (built-in function)

 	MPDClient.unsubscribe() (built-in function)

 	MPDClient.update() (built-in function)

 	MPDClient.urlhandlers() (built-in function)

 	MPDClient.volume() (built-in function)

python-mpd2 Changes List

Changes in v3.0.3

	asyncio: tolerate early disconnects

Changes in v3.0.2

	asyncio: fix disconnect happen before connect

	asyncio: better protection against request cancellation

	asyncio: idle iterator raises error when connection closed

Changes in v3.0.1

	3.0.0 accidentially introduced typing annotation that were not meant to be published yet.

Changes in v3.0.0

	Breaking changes: albumart now returns dictionary :code:`{“size”: “…”,

“binary”: b”…”}` instead of just a string
* add readpicture command
* add partition, newpartition and delpartition commands
* add moveoutput command
* removed deprecated send_ and fetch_ commands. Use the asyncio or twisted API instead for asynchronous mpd commands.

Changes in v2.0.0

	Minimum python version was increased to python3.6, python2.7 support was dropped

	asyncio: fix parsing delimiters

	add support for albumart command

Changes in v1.1.0

	Fix list command to work with grouping. Always returns list of dictionaries now.
Make sure to adopt your code since this is an API change.

	fix compatibility with python3.9

	fix connecting to unix socket in asyncio version

	close asyncio transports on disconnect

	create TCP socket with TCP_NODELAY for better responsiveness

Changes in v1.0.0

	Add support for twisted

	Add support for asyncio

	Use @property and @property.setter for MPDClient.timeout

	Deprecate send_* and fetch_* variants of MPD commands: Consider using asyncio/twisted instead

	Port argument is optional when connecting via unix sockets.

	python-mpd will now raise mpd.ConnectionError instead of socket.error, when connection is lost

	Add command outputvolume for forked-daapd

Changes in v0.5.5

	fix sended newlines on windows systems

	include tests in source distribution

Changes in v0.5.4

	support for listfiles, rangeid, addtagid, cleartagid, mount, umount,
listmounts, listneighbors

Changes in v0.5.3

	noidle command does returns pending changes now

Changes in v0.5.2

	add support for readcomments and toggleoutput

Changes in v0.5.1

	add support for ranges

Changes in 0.5.0

	improved support for sticker

Changes in 0.4.6

	enforce utf8 for encoding/decoding in python3

Changes in 0.4.5

	support for logging

Changes in 0.4.4

	fix cleanup after broken connection

	deprecate timeout parameter added in v0.4.2

	add timeout and idletimeout property

Changes in 0.4.3

	add searchadd and searchaddpl command

	fix commands without a callback function

	transform MPDClient to new style class

Changes in 0.4.2

	backward compatible unicode handling

	added optional socket timeout parameter

Changes in 0.4.1

	prio and prioid was spelled wrong

	added config command

	remove deprecated volume command

Changes in 0.4.0

	python3 support (python2.6 is minimum python version required)

	support for the upcoming client-to-client protocol

	added new commands of mpd (seekcur, prior, priorid)

	methods are explicit declared now, so they are shown in ipython

	added unit tests

	documented API to add new commands (see Future Compatible)

Changes in 0.3.0

	added replay_gain_mode and replay_gain_status commands

	added mixrampdb and mixrampdelay commands

	added findadd and rescan commands

	added decoders command

	changed license to LGPL

	added sticker commands

	correctly handle errors in command lists (fixes a longstanding bug)

	raise IteratingError instead of breaking horribly when called wrong

	added fileno() to export socket FD (for polling with select et al.)

	asynchronous API (use send_<cmd> to queue, fetch_<cmd> to retrieve)

	support for connecting to unix domain sockets

	added consume and single commands

	added idle and noidle commands

	added listplaylists command

Changes in 0.2.1

	connect() no longer broken on Windows

Changes in 0.2.0

	support for IPv6 and multi-homed hostnames

	connect() will fail if already connected

	commands may now raise ConnectionError

	addid and update may now return None

Future Compatible

New commands or special handling of commands can be easily implemented. Use
add_command() or remove_command() to modify the commands of the
MPDClient class and all its instances.:

def fetch_cover(client):
 """"Take a MPDClient instance as its arguments and return mimetype and image"""
 # this command may come in the future.
 pass

client.add_command("get_cover", fetch_cover)
you can then use:
client.get_cover()

remove the command, because it doesn't exist already.
client.remove_command("get_cover")

Thread-Safety

Currently MPDClient is NOT thread-safe. As it use a socket internaly,
only one thread can send or receive at the time.

But MPDClient can be easily extended to be thread-safe using locks [http://docs.python.org/library/threading.html#lock-objects]. Take a look at
examples/locking.py for further informations.

Unicode Handling

To quote the mpd protocol documentation [https://www.musicpd.org/doc/protocol/request_syntax.html]:

> All data between the client and the server is encoded in UTF-8.

With Python 3:

In Python 3, Unicode string is the default string type. So just pass these
strings as arguments for MPD commands and python-mpd2 will also return such
Unicode string.

Commands

Note

Each command have a send_ and a fetch_ variant, which allows to send a
MPD command and then fetch the result later. See Using the client library for
examples and more information.

Querying

	
MPDClient.clearerror()

	Clears the current error message in status (this is also
accomplished by any command that starts playback).

	
MPDClient.currentsong()

	Returns the song info of the current song (same song that is
identified in status).

	
MPDClient.idle([subsystems])

	(Introduced with MPD 0.14) Waits until there is a noteworthy
change in one or more of MPD’s subsystems. As soon as there is
one, it lists all changed systems in a line in the format changed::
SUBSYSTEM, where SUBSYSTEM is one of the following:

While a client is waiting for idle results, the server disables
timeouts, allowing a client to wait for events as long as mpd
runs. The idle command can be canceled by sending the command
noidle (no other commands are allowed). MPD will then leave idle
mode and print results immediately; might be empty at this time.

If the optional SUBSYSTEMS argument is used, MPD will only send
notifications when something changed in one of the specified
subsytems.

	database: the song database has been modified after update.

	update: a database update has started or finished. If the
database was modified during the update, the database event is
also emitted.

	stored_playlist: a stored playlist has been modified, renamed,
created or deleted

	playlist: the current playlist has been modified

	player: the player has been started, stopped or seeked

	mixer: the volume has been changed

	output: an audio output has been enabled or disabled

	options: options like

	partition: a partition was added, removed or changed

	sticker: the sticker database has been modified.

	subscription: a client has subscribed or unsubscribed to a
channel

	message: a message was received on a channel this client is
subscribed to; this event is only emitted when the queue is
empty

	
MPDClient.status()

	Returns the current status of the player and the volume level.

	partition: the name of the current partition

	volume: 0-100

	repeat: 0 or 1

	random: 0 or 1

	single: (Introduced with MPD 0.15) 0 or 1

	consume: 0 or 1

	playlist: 31-bit unsigned integer, the playlist version number

	playlistlength: integer, the length of the playlist

	state: play, stop, or pause

	song: playlist song number of the current song stopped on or
playing

	songid: playlist songid of the current song stopped on or
playing

	nextsong: playlist song number of the next song to be played

	nextsongid: playlist songid of the next song to be played

	time: total time elapsed (of current playing/paused song)

	elapsed: (Introduced with MPD 0.16) Total time elapsed within
the current song, but with higher resolution.

	duration: (Introduced with MPD 0.20) Duration of the current
song in seconds.

	bitrate: instantaneous bitrate in kbps

	xfade: crossfade in seconds

	mixrampdb: mixramp threshold in dB

	mixrampdelay: mixrampdelay in seconds

	audio: sampleRate:bits:channels

	updating_db: job id

	error: if there is an error, returns message here

	
MPDClient.stats()

	Displays statistics.

	artists: number of artists

	albums: number of albums

	songs: number of songs

	uptime: daemon uptime in seconds

	db_playtime: sum of all song times in the db

	db_update: last db update in UNIX time

	playtime: time length of music played

Playback options

	
MPDClient.consume(state)

	Sets consume state to STATE, STATE should be 0 or 1. When
consume is activated, each song played is removed from playlist.

	
MPDClient.crossfade(seconds)

	Sets crossfading between songs.

	
MPDClient.mixrampdb(decibels)

	Sets the threshold at which songs will be overlapped. Like
crossfading but doesn’t fade the track volume, just overlaps. The
songs need to have MixRamp tags added by an external tool. 0dB is
the normalized maximum volume so use negative values, I prefer
-17dB. In the absence of mixramp tags crossfading will be used.
See http://sourceforge.net/projects/mixramp

	
MPDClient.mixrampdelay(seconds)

	Additional time subtracted from the overlap calculated by
mixrampdb. A value of “nan” disables MixRamp overlapping and falls
back to crossfading.

	
MPDClient.random(state)

	Sets random state to STATE, STATE should be 0 or 1.

	
MPDClient.repeat(state)

	Sets repeat state to STATE, STATE should be 0 or 1.

	
MPDClient.setvol(vol)

	Sets volume to VOL, the range of volume is 0-100.

	
MPDClient.volume(vol_change)

	Changes volume by amount VOL_CHANGE, the range is -100 to +100.
A negative value decreases volume, positive value increases volume.

	
MPDClient.single(state)

	Sets single state to STATE, STATE should be 0 or 1. When
single is activated, playback is stopped after current song, or
song is repeated if the ‘repeat’ mode is enabled.

	
MPDClient.replay_gain_mode(mode)

	Sets the replay gain mode. One of off, track, album, auto
(added in MPD 0.16) .

Changing the mode during playback may take several seconds,
because the new settings does not affect the buffered data.

This command triggers the options idle event.

	
MPDClient.replay_gain_status()

	Returns replay gain options. Currently, only the variable
replay_gain_mode is returned.

Controlling playback

	
MPDClient.next()

	Plays next song in the playlist.

	
MPDClient.pause(pause)

	Toggles pause/resumes playing, PAUSE is 0 or 1.

	
MPDClient.play(songpos)

	Begins playing the playlist at song number SONGPOS.

	
MPDClient.playid(songid)

	Begins playing the playlist at song SONGID.

	
MPDClient.previous()

	Plays previous song in the playlist.

	
MPDClient.seek(songpos, time)

	Seeks to the position TIME (in seconds; fractions allowed) of
entry SONGPOS in the playlist.

	
MPDClient.seekid(songid, time)

	Seeks to the position TIME (in seconds; fractions allowed) of
song SONGID.

	
MPDClient.seekcur(time)

	Seeks to the position TIME (in seconds; fractions allowed)
within the current song. If prefixed by ‘+’ or ‘-‘, then the time
is relative to the current playing position.

	
MPDClient.stop()

	Stops playing.

The current playlist

	
MPDClient.add(uri)

	Adds the file URI to the playlist (directories add recursively).
URI can also be a single file.

	
MPDClient.addid(uri, position)

	Adds a song to the playlist (non-recursive) and returns the song
id.

URI is always a single file or URL. For example:

addid "foo.mp3"
Id: 999
OK

	
MPDClient.clear()

	Clears the current playlist.

	
MPDClient.delete(index_or_range)

	Deletes a song, or a range of songs, from the playlist based on the song’s
position in the playlist.

A range can be specified by passing a tuple.

	
MPDClient.deleteid(songid)

	Deletes the song SONGID from the playlist

	
MPDClient.move(to)

	Moves the song at FROM or range of songs at START:END to TO
in the playlist. (Ranges are supported since MPD 0.15)

	
MPDClient.moveid(from, to)

	Moves the song with FROM (songid) to TO (playlist index) in
the playlist. If TO is negative, it is relative to the current
song in the playlist (if there is one).

	
MPDClient.playlist()

	Displays the current playlist.

	
MPDClient.playlistfind(tag, needle)

	Finds songs in the current playlist with strict matching.

	
MPDClient.playlistid(songid)

	Returns a list of songs in the playlist. SONGID is optional and
specifies a single song to display info for.

	
MPDClient.playlistinfo()

	Returns a list of all songs in the playlist, or if the optional
argument is given, displays information only for the song
SONGPOS or the range of songs START:END

	
MPDClient.playlistsearch(tag, needle)

	Returns case-insensitive search results for partial matches in the
current playlist.

	
MPDClient.plchanges(version, start:end)

	Returns changed songs currently in the playlist since VERSION.
Start and end positions may be given to limit the output to
changes in the given range.

To detect songs that were deleted at the end of the playlist, use
playlistlength returned by status command.

	
MPDClient.plchangesposid(version, start:end)

	Returns changed songs currently in the playlist since VERSION.
This function only returns the position and the id of the changed
song, not the complete metadata. This is more bandwidth efficient.

To detect songs that were deleted at the end of the playlist, use
playlistlength returned by status command.

	
MPDClient.prio(priority, start:end)

	Set the priority of the specified songs. A higher priority means
that it will be played first when “random” mode is enabled.

A priority is an integer between 0 and 255. The default priority
of new songs is 0.

	
MPDClient.prioid(priority, id)

	Same as prio, but address the songs with their id.

	
MPDClient.rangeid(id, start:end)

	(Since MPD 0.19) Specifies the portion of the song that shall be
played. START and END are offsets in seconds (fractional
seconds allowed); both are optional. Omitting both (i.e. sending
just “:”) means “remove the range, play everything”. A song that
is currently playing cannot be manipulated this way.

	
MPDClient.shuffle(start:end)

	Shuffles the current playlist. START:END is optional and
specifies a range of songs.

	
MPDClient.swap(song1, song2)

	Swaps the positions of SONG1 and SONG2.

	
MPDClient.swapid(song1, song2)

	Swaps the positions of SONG1 and SONG2 (both song ids).

	
MPDClient.addtagid(songid, tag, value)

	Adds a tag to the specified song. Editing song tags is only
possible for remote songs. This change is volatile: it may be
overwritten by tags received from the server, and the data is gone
when the song gets removed from the queue.

	
MPDClient.cleartagid(songid[, tag])

	Removes tags from the specified song. If TAG is not specified,
then all tag values will be removed. Editing song tags is only
possible for remote songs.

Stored playlists

Playlists are stored inside the configured playlist directory.
They are addressed with their file name (without the directory and
without the

Some of the commands described in this section can be used to run
playlist plugins instead of the hard-coded simple

	
MPDClient.listplaylist(name)

	Returns a list of the songs in the playlist. Playlist plugins are supported.

	
MPDClient.listplaylistinfo(name)

	Returns a list of the songs with metadata in the playlist. Playlist plugins
are supported.

	
MPDClient.listplaylists()

	Returns a list of the playlist in the playlist directory.

After each playlist name the server sends its last modification
time as attribute “Last-Modified” in ISO 8601 format. To avoid
problems due to clock differences between clients and the server,
clients should not compare this value with their local clock.

	
MPDClient.load(name[, start:end])

	Loads the playlist into the current queue. Playlist plugins are
supported. A range may be specified to load only a part of the
playlist.

	
MPDClient.playlistadd(name, uri)

	Adds URI to the playlist

	
MPDClient.playlistclear(name)

	Clears the playlist

	
MPDClient.playlistdelete(name, songpos)

	Deletes SONGPOS from the playlist

	
MPDClient.playlistmove(name, from, to)

	Moves the song at position FROM in the playlist

	
MPDClient.rename(name, new_name)

	Renames the playlist

	
MPDClient.rm(name)

	Removes the playlist

	
MPDClient.save(name)

	Saves the current playlist to

The music database

	
MPDClient.albumart(uri)

	Returns the album art image for the given song.

URI is always a single file or URL.

The returned value is a dictionary containing the album art image in its
'binary' entry. If the given URI is invalid, or the song does not have
an album cover art file that MPD recognizes, a CommandError is thrown.

	
MPDClient.count(tag, needle[, ..., "group", grouptype])

	Returns the counts of the number of songs and their total playtime in
the db matching TAG exactly.

The group keyword may be used to group the results by a tag. The
following prints per-artist counts:

count group artist

	
MPDClient.find(type, what[, ..., startend])

	Returns songs in the db that are exactly WHAT. TYPE can be any
tag supported by MPD, or one of the special parameters:

WHAT is what to find.

window can be used to query only a portion of the real response.
The parameter is two zero-based record numbers; a start number and
an end number.

	any checks all tag values

	file checks the full path (relative to the music directory)

	base restricts the search to songs in the given directory
(also relative to the music directory)

	modified-since compares the file’s time stamp with the given
value (ISO 8601 or UNIX time stamp)

	
MPDClient.findadd(type, what[, ...])

	Returns songs in the db that are exactly WHAT and adds them to
current playlist. Parameters have the same meaning as for find.

	
MPDClient.list(type[, filtertype, filterwhat, ..., "group", grouptype, ...])

	Returns a list of unique tag values of the specified type.
TYPE can be any tag supported by MPD or file.

Additional arguments may specify a filter like the one in the find
command.

The group keyword may be used (repeatedly) to group the results
by one or more tags. The following example lists all album names,
grouped by their respective (album) artist:

list album group albumartist

	
MPDClient.listall(uri)

	Returns a lists of all songs and directories in URI.

Do not use this command. Do not manage a client-side copy of MPD’s
database. That is fragile and adds huge overhead. It will break
with large databases. Instead, query MPD whenever you need
something.

	
MPDClient.listallinfo(uri)

	Returns a lists of all songs and directories with their metadata
info in URI.

Same as listall, except it also returns metadata info in the same
format as lsinfo.

Do not use this command. Do not manage a client-side copy of MPD’s
database. That is fragile and adds huge overhead. It will break
with large databases. Instead, query MPD whenever you need
something.

	
MPDClient.listfiles(uri)

	Returns a list of the contents of the directory URI, including files
are not recognized by MPD. URI can be a path relative to the music
directory or an URI understood by one of the storage plugins. The
response contains at least one line for each directory entry with
the prefix “file: ” or “directory: “, and may be followed by file
attributes such as “Last-Modified” and “size”.

For example, “smb://SERVER” returns a list of all shares on the
given SMB/CIFS server; “nfs://servername/path” obtains a directory
listing from the NFS server.

	
MPDClient.lsinfo(uri)

	Returns a list of the contents of the directory URI.

When listing the root directory, this currently returns the list
of stored playlists. This behavior is deprecated; use
“listplaylists” instead.

This command may be used to list metadata of remote files (e.g.
URI beginning with “http://” or “smb://”).

Clients that are connected via UNIX domain socket may use this
command to read the tags of an arbitrary local file (URI is an
absolute path).

	
MPDClient.readcomments(uri)

	Returns “comments” (i.e. key-value pairs) from the file specified by
“URI”. This “URI” can be a path relative to the music directory or
an absolute path.

This command may be used to list metadata of remote files (e.g.
URI beginning with “http://” or “smb://”).

The response consists of lines in the form “KEY: VALUE”. Comments
with suspicious characters (e.g. newlines) are ignored silently.

The meaning of these depends on the codec, and not all decoder
plugins support it. For example, on Ogg files, this lists the
Vorbis comments.

	
MPDClient.readpicture(uri)

	Returns the embedded cover image for the given song.

URI is always a single file or URL.

The returned value is a dictionary containing the embedded cover image in its
'binary' entry, and potentially the picture’s MIME type in its 'type' entry.
If the given URI is invalid, a CommandError is thrown. If the given song URI exists,
but the song does not have an embedded cover image that MPD recognizes, an empty
dictionary is returned.

	
MPDClient.search(type, what[, ..., startend])

	Returns results of a search for any song that contains WHAT.
Parameters have the same meaning as for find, except that search
is not case sensitive.

	
MPDClient.searchadd(type, what[, ...])

	Searches for any song that contains WHAT in tag TYPE and adds
them to current playlist.

Parameters have the same meaning as for find, except that search
is not case sensitive.

	
MPDClient.searchaddpl(name, type, what[, ...])

	Searches for any song that contains WHAT in tag TYPE and adds
them to the playlist named NAME.

If a playlist by that name doesn’t exist it is created.

Parameters have the same meaning as for find, except that search
is not case sensitive.

	
MPDClient.update([uri])

	Updates the music database: find new files, remove deleted files,
update modified files.

URI is a particular directory or song/file to update. If you do
not specify it, everything is updated.

Prints “updating_db: JOBID” where JOBID is a positive number
identifying the update job. You can read the current job id in the
status response.

	
MPDClient.rescan([uri])

	Same as update, but also rescans unmodified files.

Mounts and neighbors

A “storage” provides access to files in a directory tree. The most
basic storage plugin is the “local” storage plugin which accesses
the local file system, and there are plugins to access NFS and SMB
servers.

Multiple storages can be “mounted” together, similar to the mount
command on many operating systems, but without cooperation from
the kernel. No superuser privileges are necessary, beause this
mapping exists only inside the MPD process

	
MPDClient.mount(path, uri)

	Mount the specified remote storage URI at the given path. Example:

mount foo nfs://192.168.1.4/export/mp3

	
MPDClient.unmount(path)

	Unmounts the specified path. Example:

unmount foo

	
MPDClient.listmounts()

	Returns a list of all mounts. By default, this contains just the
configured music_directory. Example:

listmounts
mount:
storage: /home/foo/music
mount: foo
storage: nfs://192.168.1.4/export/mp3
OK

	
MPDClient.listneighbors()

	Returns a list of “neighbors” (e.g. accessible file servers on the
local net). Items on that list may be used with the mount command.
Example:

listneighbors
neighbor: smb://FOO
name: FOO (Samba 4.1.11-Debian)
OK

Stickers

“Stickers” are pieces of information attached to existing MPD
objects (e.g. song files, directories, albums). Clients can create
arbitrary name/value pairs. MPD itself does not assume any special
meaning in them.

The goal is to allow clients to share additional (possibly
dynamic) information about songs, which is neither stored on the
client (not available to other clients), nor stored in the song
files (MPD has no write access).

Client developers should create a standard for common sticker
names, to ensure interoperability.

Objects which may have stickers are addressed by their object type
(“song” for song objects) and their URI (the path within the
database for songs).

	
MPDClient.sticker_get(type, uri, name)

	Reads and returns a sticker value for the specified object.

	
MPDClient.sticker_set(type, uri, name, value)

	Adds a sticker value to the specified object. If a sticker item
with that name already exists, it is replaced.

	
MPDClient.sticker_delete(type, uri[, name])

	Deletes a sticker value from the specified object. If you do not
specify a sticker name, all sticker values are deleted.

	
MPDClient.sticker_list(type, uri)

	Lists the stickers for the specified object.

	
MPDClient.sticker_find(type, uri, name)

	Searches the sticker database for stickers with the specified
name, below the specified directory (URI). For each matching song,
it prints the URI and that one sticker’s value.

	
MPDClient.sticker_find(type, uri, name, "=", value)

	Returns the results of a search for stickers with the given value.

Other supported operators are: “<”, “>”

Connection settings

	
MPDClient.close()

	Closes the connection to MPD. MPD will try to send the remaining
output buffer before it actually closes the connection, but that
cannot be guaranteed. This command will not generate a response.

	
MPDClient.kill()

	Kills MPD.

	
MPDClient.password(password)

	This is used for authentication with the server. PASSWORD is
simply the plaintext password.

	
MPDClient.ping()

	Does nothing but return “OK”.

Partition commands

These commands allow a client to inspect and manage
“partitions”. A partition is one frontend of a multi-player
MPD process: it has separate queue, player and outputs. A
client is assigned to one partition at a time.

	
MPDClient.partition(name)

	
Switch the client to a different partition.

	

	
MPDClient.listpartitions()

	
Return a list of partitions.

	

	
MPDClient.newpartition(name)

	
Create a new partition.

	

	
MPDClient.delpartition(name)

	
Delete a partition. The partition must be empty (no connected

	
clients and no outputs).

	

	
MPDClient.moveoutput(output_name)

	
Move an output to the current partition.

	

Audio output devices

	
MPDClient.disableoutput(id)

	Turns an output off.

	
MPDClient.enableoutput(id)

	Turns an output on.

	
MPDClient.toggleoutput(id)

	Turns an output on or off, depending on the current state.

	
MPDClient.outputs()

	Returns information about all outputs:

outputid: 0
outputname: My ALSA Device
outputenabled: 0
OK

	outputid: ID of the output. May change between executions

	outputname: Name of the output. It can be any.

	outputenabled: Status of the output. 0 if disabled, 1 if
enabled.

Reflection

	
MPDClient.config()

	Returns a dump of all configuration values that may be interesting
for the client. This command is only permitted to “local” clients
(connected via UNIX domain socket).

The following response attributes are available:

	
MPDClient.commands()

	Returns which commands the current user has access to.

	
MPDClient.notcommands()

	Returns which commands the current user does not have access to.

	
MPDClient.tagtypes()

	Returns a list of available song metadata.

	
MPDClient.urlhandlers()

	Returns a list of available URL handlers.

	
MPDClient.decoders()

	Returns a list of decoder plugins, followed by their supported
suffixes and MIME types. Example response:

plugin: mad
suffix: mp3
suffix: mp2
mime_type: audio/mpeg
plugin: mpcdec
suffix: mpc

Client to client

Clients can communicate with each others over “channels”. A
channel is created by a client subscribing to it. More than one
client can be subscribed to a channel at a time; all of them will
receive the messages which get sent to it.

Each time a client subscribes or unsubscribes, the global idle
event subscription is generated. In conjunction with the
channels command, this may be used to auto-detect clients
providing additional services.

New messages are indicated by the message idle event.

	
MPDClient.subscribe(name)

	Subscribe to a channel. The channel is created if it does not
exist already. The name may consist of alphanumeric ASCII
characters plus underscore, dash, dot and colon.

	
MPDClient.unsubscribe(name)

	Unsubscribe from a channel.

	
MPDClient.channels()

	Obtains and returns a list of all channels. The response is a list of
“channel:” lines.

	
MPDClient.readmessages()

	Reads messages for this client. The response is a list of
“channel:” and “message:” lines.

	
MPDClient.sendmessage(channel, text)

	Send a message to the specified channel.

Using the client library

The client library can be used as follows:

>>> from mpd import MPDClient
>>> client = MPDClient() # create client object
>>> client.timeout = 10 # network timeout in seconds (floats allowed), default: None
>>> client.idletimeout = None # timeout for fetching the result of the idle command is handled seperately, default: None
>>> client.connect("localhost", 6600) # connect to localhost:6600
>>> print(client.mpd_version) # print the MPD version
>>> print(client.find("any", "house")) # print result of the command "find any house"
>>> client.close() # send the close command
>>> client.disconnect() # disconnect from the server

A list of supported commands, their arguments (as MPD currently understands
them), and the functions used to parse their responses can be found in
Commands. See the MPD protocol documentation [http://www.musicpd.org/doc/protocol/] for more details.

Command lists are also supported using command_list_ok_begin() and
command_list_end():

>>> client.command_list_ok_begin() # start a command list
>>> client.update() # insert the update command into the list
>>> client.status() # insert the status command into the list
>>> results = client.command_list_end() # results will be a list with the results

Commands may also return iterators instead of lists if iterate is set
to True:

client.iterate = True
for song in client.playlistinfo():
 print song["file"]

Each command have a send_ and a fetch_ variant, which allows to send a MPD
command and then fetch the result later. This is useful for the idle command:

>>> client.send_idle()
do something else or use function like select(): http://docs.python.org/howto/sockets.html#non-blocking-sockets
ex. select([client], [], []) or with gobject: http://jatreuman.indefero.net/p/python-mpd/page/ExampleIdle/
>>> events = client.fetch_idle()

Some more complex usage examples can be found
here [http://jatreuman.indefero.net/p/python-mpd/doc/]

Some commands support integer ranges as argument. This is done in python-mpd2
by using two element tuple:

move the first three songs
after the last in the playlist
>>> client.status()
['file: song1.mp3',
 'file: song2.mp3',
 'file: song3.mp3',
 'file: song4.mp3']
>>> client.move((0,3), 1)
>>> client.status()
['file: song4.mp3'
 'file: song1.mp3',
 'file: song2.mp3',
 'file: song3.mp3',]

Second element can be omitted. MPD will assumes the biggest possible number then (don’t forget the comma!)::
NOTE: mpd versions between 0.16.8 and 0.17.3 contains a bug, so ommiting doesn’t work.

>>> client.delete((1,)) # delete all songs, but the first.

Logging

By default messages are sent to the logger named mpd:

>>> import logging, mpd
>>> logging.basicConfig(level=logging.DEBUG)
>>> client = mpd.MPDClient()
>>> client.connect("localhost", 6600)
INFO:mpd:Calling MPD connect('localhost', 6600, timeout=None)
>>> client.find('any', 'dubstep')
DEBUG:mpd:Calling MPD find('any', 'dubstep')

For more information about logging configuration, see
http://docs.python.org/2/howto/logging.html

Porting guide

Until the versions 0.4.x, python-mpd2 [https://github.com/Mic92/python-mpd2/] was a drop-in replacement for application
which were using the original python-mpd [http://jatreuman.indefero.net/p/python-mpd/]. That is, you could just replace the
package’s content of the latter one by the former one, and things should just
work.

However, starting from version 0.5, python-mpd2 [https://github.com/Mic92/python-mpd2/] provides enhanced features
which are NOT backward compatibles with the original python-mpd [http://jatreuman.indefero.net/p/python-mpd/] package.
This goal of this document is to explains the differences the releases and if it
makes sense, how to migrate from one version to another.

Stickers API

When fetching stickers, python-mpd2 [https://github.com/Mic92/python-mpd2/] used to return mostly the raw results MPD
was providing:

>>> client.sticker_get('song', 'foo.mp3', 'my-sticker')
'my-sticker=some value'
>>> client.sticker_list('song', 'foo.mp3')
['my-sticker=some value', 'foo=bar']

Starting from version 0.5, python-mpd2 [https://github.com/Mic92/python-mpd2/] provides a higher-level representation
of the stickers’ content:

>>> client.sticker_get('song', 'foo.mp3', 'my-sticker')
'some value'
>>> client.sticker_list('song', 'foo.mp3')
{'my-sticker': 'some value', 'foo': 'bar'}

This removes the burden from the application to do the interpretation of the
stickers’ content by itself.

New in version 0.5.

 nav.xhtml

 Table of Contents

 		
 python-mpd2 Documentation

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

